Rad51 Polymerization Reveals a New Chromatin Remodeling Mechanism
نویسندگان
چکیده
Rad51 protein is a well known protagonist of homologous recombination in eukaryotic cells. Rad51 polymerization on single-stranded DNA and its role in presynaptic filament formation have been extensively documented. Rad51 polymerizes also on double-stranded DNA but the significance of this filament formation remains unclear. We explored the behavior of Saccharomyces cerevisiae Rad51 on dsDNA and the influence of nucleosomes on Rad51 polymerization mechanism to investigate its putative role in chromatin accessibility to recombination machinery. We combined biochemical approaches, transmission electron microscopy (TEM) and atomic force microscopy (AFM) for analysis of the effects of the Rad51 filament on chromatinized templates. Quantitative analyses clearly demonstrated the occurrence of chromatin remodeling during nucleoprotein filament formation. During Rad51 polymerization, recombinase proteins moved all the nucleosomal arrays in front of the progressing filament. This polymerization process had a powerful remodeling effect, as Rad51 destabilized the nucleosomes along considerable stretches of DNA. Similar behavior was observed with RecA. Thus, recombinase polymerization is a powerful mechanism of chromatin remodeling. These remarkable features open up new possibilities for understanding DNA recombination and reveal new types of ATP-dependent chromatin dynamics.
منابع مشابه
Synergistic action of the Saccharomyces cerevisiae homologous recombination factors Rad54 and Rad51 in chromatin remodeling.
Rad54, a member of the Swi2/Snf2 protein family, works in concert with the RecA-like recombinase Rad51 during the early and late stages of homologous recombination. Rad51 markedly enhances the activities of Rad54, including the induction of topological changes in DNA and the remodeling of chromatin structure. Reciprocally, Rad54 promotes Rad51-mediated DNA strand invasion with either naked or c...
متن کاملNap1 stimulates homologous recombination by RAD51 and RAD54 in higher-ordered chromatin containing histone H1
Homologous recombination plays essential roles in mitotic DNA double strand break (DSB) repair and meiotic genetic recombination. In eukaryotes, RAD51 promotes the central homologous-pairing step during homologous recombination, but is not sufficient to overcome the reaction barrier imposed by nucleosomes. RAD54, a member of the ATP-dependent nucleosome remodeling factor family, is required to ...
متن کاملATP-dependent chromatin remodeling by the Saccharomyces cerevisiae homologous recombination factor Rdh54.
Saccharomyces cerevisiae RDH54 is a key member of the evolutionarily conserved RAD52 epistasis group of genes needed for homologous recombination and DNA double strand break repair. The RDH54-encoded protein possesses a DNA translocase activity and functions together with the Rad51 recombinase in the D-loop reaction. By chromatin immunoprecipitation (ChIP), we show that Rdh54 is recruited, in a...
متن کاملThe Human SRCAP Chromatin Remodeling Complex Promotes DNA-End Resection
BACKGROUND Repair of DNA double-strand breaks (DSBs) by homologous recombination requires 5'-3' resection of the DSB ends. In vertebrates, DSB resection is initiated by the collaborative action of CtIP and the MRE11-RAD50-NBS1 (MRN) complex. However, how this process occurs within the context of chromatin is still not well understood. RESULTS Here we identify the human SRCAP chromatin remodel...
متن کاملThe chromatin remodeler p400 ATPase facilitates Rad51-mediated repair of DNA double-strand breaks
DNA damage signaling and repair take place in a chromatin context. Consequently, chromatin-modifying enzymes, including adenosine triphosphate-dependent chromatin remodeling enzymes, play an important role in the management of DNA double-strand breaks (DSBs). Here, we show that the p400 ATPase is required for DNA repair by homologous recombination (HR). Indeed, although p400 is not required for...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- PLoS ONE
دوره 3 شماره
صفحات -
تاریخ انتشار 2008